Weierbach catchment Luxembourg

From ExperimentalHydrologyWiki
Jump to: navigation, search
Attert and Weierbach catchments



Upper Attert basin / Mosel basin, Luxembourg

Catchment size

0.45 km²
49°49’38’’N, 5°47’44’’E


900 mm, 8.8 °C (2005 – 2008)
While rainfall is distributed relatively uniform over the year without any seasonality, discharge is characterized by high flows in winter and low flows in summer
The annual runoff ratio is approximately 55% (based on 2005–2011 streamflow data).


Devonian slate bedrock
Pleistocene periglacial slope deposits, which mainly consist of 2 different layers: an upper layer with a high silt content and some rock fragments, and a basal layer located immediately above the slate geological substrate dominated by rock fragments usually orientated parallel to the slopes
soil is classified as a Dystric Endoskeletic Cambisol (Colluvic, Bathyruptic, Siltic)


Elevation: 452 to 512 m a.s.l.
catchment lies in the Ardennes massif, an elevated sub horizontal plateau that is cut by deep and forested V-shaped valleys

Vegetation/Land use

mainly covered by mixed Oak-Beech hardwood deciduous forest (76% of the land cover) and conifers (24% of the land cover). A well-defined riparian zone extends up to 3 m away from the stream channel

Context of investigation

Process understanding


  • Meteorological station since 2003
  • Runoff since 2002
  • Groundwater level since 2003
  • Chemical analysis since2002
  • Sediment
  • Interception since 2003
  • Geophysics

Links to project webpages

other Links


Glaser, B., Klaus, J., Frei, S., Frentress, J., Pfister, L., Hopp, L., 2016. On the value of surface saturated area dynamics mapped with thermal infrared imagery for modeling the hillslope-riparian-stream continuum. Water Resour. Res., DOI: 10.1002/2015WR018414
Jackisch, C., 2015. Linking structure and functioning of hydrological systems - How to achieve necessary experimental and model complexity with adequate effort, Dissertation, Karslruhe, Germany.
Juilleret, J., Dondeyne, S., Vancampenhout, K., Deckers, J., Hissler, C., 2016. Mind the gap: a classification system for integrating the subsolum into soil surveys. Geoderma. http://dx.doi.org/10.1016/j.geoderma.2015.08.031.
Juilleret, J., Iffly, J.F., Pfister, L., Hissler, C., 2011. Remarkable Pleistocene periglacial slope deposits in Luxembourg (Oesling): pedological implication and geosite potential. Bull. Soc. Nat. Luxemb. 112, 125–130.
Loritz, R., Hassler, S.K., Jackisch, C., Allroggen, N., van Schaik, L., Wienhöfer, J., Zehe, E., 2016. Picturing and modeling catchments by representative hillslopes.Hydrol. Earth Syst. Sci., 21, 1225-1249, DOI: 10.5194/hess-21-1225-2017
Martínez-Carreras N., Krein A., Iffly J.-F., Pfister L., Hoffmann L., Gallart F., 2007. Estimating suspended sediment loads and their uncertainty using sediment rating curves in the Attert river basin and sub-basins (Grand Duchy of Luxembourg). Proceedings of the International Conference on Off-site Impacts of Soil Erosion and Sediment Transport, Prague, Czech Republic.
Martínez-Carreras, N., Wetzel, C.E., Frentress, J., Ector, L., McDonnell, J.J., Hoffmann, L., Pfister, L., 2015. Hydrological connectivity inferred from diatom transport through the riparian-stream system. Hydrol. Earth Syst. Sci., 19, 3133-3151, DOI: 10.5194/hess-19-3133-2015.
Martínez‐Carreras, N., Hissler, C., Gourdol, L., Klaus, J., Juilleret, J., Iffly, J. F., Pfister, L. 2016. Storage controls on the generation of double peak hydrographs in a forested headwater catchment. J. Hydrol., 543, 255–269. doi:10.1016/j.jhydrol.2016.10.004.
Martínez‐Carreras, N., Schwab, M., Klaus, J. Hissler, C., 2016. In situ and high frequency monitoring of suspended sediment properties using a spectrophotometric sensor. Hydrol. Process., DOI: 10.1002/hyp.10858.
Pfister, L., Wagner, C., Vansuypeene, E., Drogue, G., Hoffmann L., 2005. Atlas climatique du grand-duchée de Luxembourg, Musée national d’histoire naturelle, Sociéetée des naturalistes luxembourgeois, 80 p., Cent. de Rech. Public-Gabriel Lippmann, Admin. des Serv. Tech. de l’Agric., Luxembourg.
Pfister, L., Martínez-Carreras N., Hissler C., Klaus, J., Carrer G.E., Stewart M.K., McDonnell, J.J. 2017. Bedrock geology controls on catchment storage, mixing and release: a comparative analysis of 16 nested catchments. Hydrol. Process., DOI: 10.1002/hyp.11134.
Scaini, A., Audebert, M., Hissler, C., Fenicia, F., Gourdol, L., Pfister, L., Beven, K.J., 2017. Velocity and celerity dynamics at plot scale inferred from artificial tracing experiments and time‐lapse ERT. J. Hydrol., 546, 28–43, DOI: 10.1016/j.jhydrol.2016.12.035.
Schwab, M., Klaus, J., Pfister, L., Weiler, M. 2016. Diel discharge cycles explained through viscosity fluctuations in riparian inflow. Water Resour. Res., DOI: 10.1002/2016WR018626.
Sprenger, M., Seeger, S., Blume, T., Weiler, M., 2016. Travel times in the vadose zone: Variability in space and time. Water Resour. Res., 52, pp. 5727—5754, DOI: http://doi.org/10.1002/2015WR018077.
Wrede, S., Fenicia, F., Martínez-Carreras, N., Juilleret, j., Hissler, C., Krein, A., Savenije, H.H.G., Uhlenbrook, S., Kavetski, D., Pfister, L., 2015. Towards more systematic perceptual model development: a case study using 3 Luxembourgish catchments. Hydrol. Process., 29(12), 2731-2750, DOI: 10.1002/hyp.10393.
Personal tools