Walnut Gulch Experimental Watershed

From Experimental Hydrology Wiki
Jump to navigation Jump to search
View into the Walnut Gulch Experimental Watershed
Location of the Walnut Gulch Experimental Watershed, Arizona, USA

Location

Located in SE Arizona, USA surrounding the historic city of Tombstone, the 150 km² Walnut Gulch Experimental Watershed was established in the early 1950's to study the role of watershed treatments on downstream water yield. The site was deemed typical of the black grama grass-brush dominated areas of southern New Mexico and Arizona.

Catchment size

150 km²

Climate

Semiarid

Geology

Vegetation/Land use

Black grama grass-brush dominated areas

Context of investigation

The role of watershed treatments on downstream water yield

Measurements/Equipment

Precipitation since 1953
Meteorology
Runoff
Sediment transport
Soil Moisture

Links to project webpages

other Links

References

  • Amitai, E., Unkrich, C.L., Goodrich, D.C., E. Habib, E., Thill, B., 2012: Assessing Satellite- Based Rainfall Estimates in Semiarid Watersheds Using the USDA-ARS Walnut Gulch Gauge Network and TRMM PR. J. Hydrometeor., 13, 1579–1588, DOI: 10.1175/JHM-D-716 12-016.1.
  • Cadaret, E.M., McGwire, K.C., Nouwakpo, S.K., Weltz, M.A., Saito, L., 2016. Vegetation canopy cover effects on sediment erosion processes in the Upper Colorado River Basin Mancos Shale formation, Price, Utah, USA. Catena, 147, 334-344, DOI: 10.1016/j.catena.2016.06.043.
  • Cadaret, E.M., Nouwakpo, S.K., McGwire, K.C., Weltz, M.A., Saito, L., 2016. Experimental investigation of the effect of vegetation on soil, sediment erosion, and salt transport processes in the Upper Colorado River Basin Mancos Shale formation, Price, Utah, USA. Catena, 147, 650-662, DOI: 10.1016/j.catena.2016.08.024.
  • Colliander, A., Cosh, M.H., Misra, S., Jackson, T.J., Crow, W.T., Chan, S., Bindlish, R., Chae, C., Holifield Collins, C., Yueh, S.H., 2017. Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15). Remote Sensing of Environment, 196, 101-112, DOI: 10.1016/j.rse.2017.04.022.
  • Carey, A.M., Paige, G.B., 2016. Ecological Site-Scale Hydrologic Response in a Semiarid Rangeland Watershed. Rangeland Ecology and Management, 69(6), 481-490, DOI: 10.1016/j.rama.2016.06.007.
  • Costa, A.C., Bronstert, A., de Araújo, J.C. 2012. A channel transmission losses model for different dryland rivers. Hydrol. Earth Syst. Sci., 16, 1111-1135, DOI: 10.5194/hess-16-1111-2012.
  • Emmerich, W.E., Verdugo, C.L. 2008. Long-term carbon dioxide and water flux database, Walnut Gulch Experimental Watershed, Arizona, United States. Water Resour. Res., 44, W05S09, DOI: 10.1029/2006WR005693.
  • Das, N.N., Mohanty, B.P., Cosh, M.H., Jackson, T.J., 2008. Modeling and assimilation of root zone soil moisture using remote sensing observations in Walnut Gulch Watershed during SMEX04. Remote Sensing of Environment, 112(2), 415-429, DOI: 10.1016/j.rse.2006.10.027.
  • Foda, R.F., Awadallah, A.G., Gad, M.A., 2017. A Fast Semi Distributed Rainfall Runoff Model for Engineering Applications in Arid and Semi-Arid Regions. Water Resources Management, 31(15), 4941-4955, DOI: 10.1007/s11269-017-1787-2.
  • Gao, P., Nearing, M.A., Commons, M. 2013. Suspended sediment transport at the instantaneous and event time scales in semiarid watersheds of southeastern Arizona, USA. Water Resour. Res., 49(10), 6857-6870, DOI: 10.1002/wrcr.20549.
  • Goodrich, D. C., Keefer, T.O., Unkrich, C.L., Nichols, M.H., Osborn, H.B., Stone, J.J., Smith, J.R., 2008. Long-term precipitation database, Walnut Gulch Experimental Watershed, Arizona, United States, Water Resour. Res., 44, W05S04, DOI: 10.1029/2006WR005782.
  • Hatfield, J.L., Jaynes, D.B., Burkart, M.R., Cambardella, C.A., Moorman, T.B., Prueger, J.H., Smith, M.A., 1999. Water quality in Walnut Creek Watershed: setting and farming practices. Journal of Environmental Quality, 28(1), 11–24, DOI: 10.2134/jeq1999.00472425002800010002x.
  • Houser, P., Gupta, H.V., Shuttelworth, W.J., Famiglietti, J.S. 2001. Multiobjective calibration and sensitivity of a distributed land surface water and energy balance model. JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES 106, D24, 33421-33433, DOI: 10.1029/2000JD900803.
  • Keefer, T.O., Renard, K.G., Goodrich, D.C., Heilman, P., Unkrich, C., 2016. Quantifying extreme rainfall events and their hydrologic response in southeastern Arizona. Journal of Hydrologic Engineering, 21(1),04015054, DOI: 10.1061/(ASCE)HE.1943-5584.0001270.
  • Knipper, K.R., Hogue, T.S., Franz, K.J., Scott, R.L., 2017. Downscaling SMAP and SMOS soil moisture with moderate-resolution imaging spectroradiometer visible and infrared products over southern Arizona. Journal of Applied Remote Sensing, 11(2), 026021, DOI: 10.1117/1.JRS.11.026021.
  • Langhans, C., Govers, G., Diels, J., Stone, J.J., Nearing, M.A. 2014. Modeling scale-dependent runoff generation in a small semi-arid watershed accounting for rainfall intensity and water depth. ADVANCES IN WATER RESOURCES, 69, 65-78, DOI: 10.1016/j.advwatres.2014.03.005.
  • Moran, M.S., Peters, D.P., McClaran, M.P., Nichols, M.H., Adams, M.B., 2008. Long-term data collection at USDA experimental sites for studies of ecohydrology. Ecohydrology, 1(4), 377-393, DOI: 10.1002/eco.24.
  • Moran, M.S., Emmerich, W.E., Goodrich, D.C., Heilman, P., Holifield Collins, C.D., Keefer, T.O., Nearing, M.A., Nichols, M.H., Renard, K.G., Scott, R.L., Smith, J.R., Stone, J.J., Unkrich, C.L., Wong, J., 2008. Preface to special section on fifty years of research and data collection: U.S. Department of Agriculture Walnut Gulch Experimental Watershed, Water Resour. Res., 44, W05S01, DOI: 10.1029/2007WR006083.
  • Moran, M.S., Scott, R.L., Keefer, T.O., Emmerich, W.E., Hernandez, M., Nearing, G.S., Paige, G.B., Cosh, M.H., O'Neill, P.E., 2009. Partitioning evapotranspiration in semiarid grassland and shrubland ecosystems using time series of soil surface temperature. Agricultural and Forest Meteorology, 149(1), 59-72, DOI: 10.1016/j.agrformet.2008.07.004.
  • Nearing, M.A., Nichols, M.H., Stone, J.J., Renard, K.G., Simanton, J.R., 2007. Sediment yields from unit-source semiarid watersheds at Walnut Gulch. Water Resour. Res., 43(6), W06426, DOI: 10.1029/2006WR005692.
  • Nichols, M.H., Nearing, M.A., Polyakov, V.O., Stone, J.J. 2013. A sediment budget for a small semiarid watershed in southeastern Arizona, USA. GEOMORPHOLOGY 180, 137-145, DOI: 10.1016/j.geomorph.2012.10.002.
  • Nichols, M.H., Nearing, M., Hernandez, M., Polyakov, V.O., 2016. Monitoring channel head erosion processes in response to an artificially induced abrupt base level change using time-lapse photography. Geomorphology, 265, 107-116, DOI: 10.1016/j.geomorph.2016.05.001.
  • Pacheco-Guerrero, A., Goodrich, D.C., González-Trinidad, J., Júnez-Ferreira, H.E., Bautista-Capetillo, C.F., 2017. Flooding in ephemeral streams: Incorporating transmission losses. Journal of Maps, 13(2), 350-357, DOI: 10.1080/17445647.2017.1305303.
  • Pelletier, J.D., Nichols, M.H., Nearing, M.A. , 2016. The influence of Holocene vegetation changes on topography and erosion rates: A case study at Walnut Gulch Experimental Watershed, Arizona. Earth Surface Dynamics, 4(2), 471-488, DOI: 10.5194/esurf-4-471-2016.
  • Polyakov, V.O., Nearing, M.A., Hawdon, A.A., Wilkinson, S.N., Nichols, M.H. 2013. Comparison of two stream gauging systems for measuring runoff and sediment yield for a semi-arid watershed. EARTH SURFACE PROCESSES AND LANDFORMS 38(4), 383-390, DOI: 10.1002/esp.3287.
  • Renard. K.G., Nichols, M.H., Woolhiser, D.A., Osborn, H.B., 2008. A brief background on the U.S. Department of Agriculture Agricultural Research Service Walnut Gulch Experimental Watershed. Water Resour. Res., 44, W05S02, DOI: 10Ð1029/2006WR005691.
  • Sabzevari, T., Noroozpour, S. 2014. Effects of hillslope geometry on surface and subsurface flows. HYDROGEOLOGY JOURNAL 22(7), 1593-1604, DOI: 10.1007/s10040-014-1149-6.
  • Sadeghi, M., Babaeian, E., Tuller, M., Jones, S.B., 2017. The optical trapezoid model: A novel approach to remote sensing of soil moisture applied to Sentinel-2 and Landsat-8 observations. Remote Sensing of Environment, 198, 52-68, DOI: 10.1016/j.rse.2017.05.041.
  • Scott, R.L. 2010. Using watershed water balance to evaluate the accuracy of eddy covariance evaporation measurements for three semiarid ecosystems. Agricultural and Forest Meteorology 150, 219–225, DOI: 10.1016/j.agrformet.2009.11.002.
  • Scott, R.L., Biederman, J.A., Hamerlynck, E.P., Barron-Gafford, G.A., 2015. The carbon balance pivot point of southwestern U.S. semiarid ecosystems: Insights from the 21st century drought. Journal of Geophysical Research G: Biogeosciences, 120(12), 2612-2624, DOI: 10.1002/2015JG003181.
  • Simanton, J.R., Hawkins, R.H., Mohseni-Saravi, M., Renard, K.G., 1996. Runoff curve number variation with drainage area, Walnut Gulch, Arizona. Transactions of the ASAE, 39, 1391–1394, DOI: 10.13031/2013.27630.
  • Singer, M.B., Michaelides, K., 2017. Deciphering the expression of climate change within the Lower Colorado River basin by stochastic simulation of convective rainfall. Environmental Research Letters, 12(10),104011, DOI: 10.1088/1748-9326/aa8e50.
  • Sivandran, G., Bras, R.L. 2013. Dynamic root distributions in ecohydrological modeling: A case study at Walnut Gulch Experimental Watershed. Water Resour. Res., 49(6), 3292-3305, DOI: 10.1002/wrcr.20245.
  • Sivandran, G., Bras, R.L. 2012. Identifying the optimal spatially and temporally invariant root distribution for a semiarid environment. Water Resour. Res., 48, W12525, DOI: 10.1029/2012WR012055.
  • Stillman, S., Ninneman, J.,, Zeng, X.B., Franz, T., Scott, R.L., Shuttleworth, W.J., Cummins, K. 2014. Summer Soil Moisture Spatiotemporal Variability in Southeastern Arizona. J. Hydrometeor., 15(4), 1473-1485.DOI: http://dx.doi.org/10.1175/JHM-D-13-0173.1.
  • Stillman, S., Zeng, X.B., Shuttleworth, WJ., Goodrich, D.C., Unkrich, C.L., Zreda, M. 2013. Spatiotemporal Variability of Summer Precipitation in Southeastern Arizona. J. Hydrometeor., 14(6), 1944-1951, DOI: 10.1175/JHM-D-13-017.1.
  • Stillman, S., Zeng, X., Bosilovich, M.G., 2016. Evaluation of 22 precipitation and 23 soil moisture products over a semiarid area in Southeastern Arizona. J. Hydrometeor., 17(1), 211-230, DOI: 10.1175/JHM-D-15-0007.1.
  • Tabatabaeenejad, A., Burgin, M., Duan, X.Y., Moghaddam, M., 2015. P-Band Radar Retrieval of Subsurface Soil Moisture Profile as a Second-Order Polynomial: First AirMOSS Results. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 53(2), 645-658, DOI: 10.1109/TGRS.2014.2326839.
  • Tabatabaeenejad, A., Chen, R.H., Moghaddam, M., 2016. Assessment of retrieval errors of AirMOSS root-zone soil moisture products. International Geoscience and Remote Sensing Symposium (IGARSS), 2016-November,7730372, 5268-5271, DOI: 10.1109/IGARSS.2016.7730372.
  • White, C.B., Houser, P.R., Arain, A.M., Yang, Z.L., Syed, K., Shuttleworth, W.J. 1997. The aggregate description of semi-arid vegetation with precipitation-generated soil moisture heterogeneity. Hydrol. Earth Syst. Sci., 1, 205-212, DOI: 10.5194/hess-1-205-1997.
  • Yu, Z.B., Fu, X.L., Luo, L.F., Lu, H.S., Ju, Q., Liu, D., Kalin, D.A., Huang, D., Yang, C.G., Zhao, LL. 2014. One-dimensional soil temperature simulation with Common Land Model by assimilating in situ observations and MODIS LST with the ensemble particle filter. Water Resour. Res., 50(8), 6950-6965, DOI: 10.1002/2012WR013473.
  • Yuan, Y.P., Nie, W.M., McCutcheon, SC., Taguas, E.V. 2014. Initial abstraction and curve numbers for semiarid watersheds in Southeastern Arizona . Hydrol. Process., 28(3), 774-783, DOI: 10.1002/hyp.9592.